Sphere-Foliated Constant Mean Curvature Submanifolds
نویسندگان
چکیده
منابع مشابه
Constant mean curvature hypersurfaces foliated by spheres ∗
We ask when a constant mean curvature n-submanifold foliated by spheres in one of the Euclidean, hyperbolic and Lorentz–Minkowski spaces (En+1, Hn+1 or Ln+1), is a hypersurface of revolution. In En+1 and Ln+1 we will assume that the spheres lie in parallel hyperplanes and in the case of hyperbolic space Hn+1, the spheres will be contained in parallel horospheres. Finally, Riemann examples in L3...
متن کاملConstant mean curvature surfaces with boundary on a sphere
In this article we study the shape of a compact surface of constant mean curvature of Euclidean space whose boundary is contained in a round sphere. We consider the case that the boundary is prescribed or that the surface meets the sphere with a constant angle. We study under what geometric conditions the surface must be spherical. Our results apply in many scenarios in physics where in absence...
متن کاملThe Mean Curvature Flow for Isoparametric Submanifolds
A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite ...
متن کاملThe Mean Curvature Flow Smoothes Lipschitz Submanifolds
The mean curvature flow is the gradient flow of volume functionals on the space of submanifolds. We prove a fundamental regularity result of mean curvature flow in this paper: a Lipschitz submanifold with small local Lipschitz norm becomes smooth instantly along the mean curvature flow. This generalizes the regularity theorem of Ecker and Huisken for Lipschitz hypersurfaces. In particular, any ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1998
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181071750